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What this talk is

e What is AMG; who does i1?
« Highlights of Multigrid- what makes MG work?
o The basic Pieces of AMG - what are the ingredients?

o The Assumptions- what assumptions (hidden and
explicit) are common to most, if not all AMG.

o Creating algorithms: How are the Assumptions used
to create algorithms (prolongation, coarse-grid
selection)
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Who is doing AMG?

e Many algorithms qualify as AMG methods. Some whose
approaches are closely related to “classical AMG:”

— Chang; Griebel, Neunhoeffer, Regler; Huang; Krechel, Stuben; Zaslavsky

« Work close to the original, but using different approaches to
coarsening or interpolation:

— Fuhrmann; Kickinger; Wittum, Wagner, Wieners

o Ideas that are important, novel, historical, or weird:

- Multigraph methods (Bank & Smith) ishtl)\'t(lcl;ll';Coar'se correction with Suboptimal Operators
 Aggregation methods (Braess: ) * Multilevel block ILU methods (Jang & Saad: Bank
& Smith & Wagner; Reusken)

+ Smoothed Aggregation methods (Mandel, Brezina, Vanek) . AMG based on Element Agglomeration (Jones &

* Black Box Multigrid (Dendy, Dendy & Bandy)

. . : Vassilevski)
+ Algebraic Multilevel Recursive Solver (Saad) .
* Element based algebraic multigrid (Chartier:; ;Nif‘c)lrse Approximate Inverse Smoothers (Tang &

Cleary et al)
* Element-based aggregation AMG (Jones, Vassilevski)
- Element-free element-based methods (Henson,
Kraus, Vassilevski)
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+ Algebraic Schur-Complement approaches (Axelsson
& Vassilevski)

* Bootstrap AMG: compatible relaxation (Brandt,
Yavneh)
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Where did we come from?

Multigrid
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Highlights of Multigrid:
The 1-d Model Problem

o Poisson’s equation: -Au =1 in[0,1], with
boundary conditions u(0) =u(1) =0.
o Discretized as:
“Ui_g T 2U T Ui

2 = f, Ug = uy =0
h
o Leads to the Matrix equation AU =T  where
02 -1 [ 0 U1 g S
[ _ _ L L u, O - f -
g-1 2 -1 N 0 2 [0 02 0
10 -1 2 -1 ] _ U Uz [ _Ufs U
A=—0 0 u=Q 0 f=0 N
3 S
. A58 BaE AR
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Highlights of Multigrid:
Weighted Jacobi Relaxation

e Consider the iteration:

unew) _ (1- ¢y ufold) +i2( uold) + yold) 4 £.)

o Letting A = D+L+U, the matrix form is:
u(new) — [(1—00)I - wD XL +V) ]u(O'd) + wD ~ Y

= Gu(od) + D 7Y

. It is easy to see that if e= y(exact) — (j(3PProx),
then

elnew) — Gwe(("d)

_CASC~

veh 6



Highlights of Multigrid:
Relaxation Typically Stalls

« The eigenvectors of G, are the same as those of A
, the Fourier Modes: v, =sin(ikrt/N), k=12--,N-1

= <V =\
NN AN

» The eigenvalues of Gy are 1 -2wsin? (km/2N), so
the effect of relaxation on the modes is:

1.0
I I)\kl for w :g .
0.5}
i No value of w
attenuates the
0.0 L lowest modes

o N2 N
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Highlights of Multigrid:
Relaxation Smooths the Error

o Initial error.

A/\ /\/\ /\A Many relaxation

A N /\ N schemes
vy \/ V\/ V\/ have the smoothing
property, where

0 oscillatory

. Error after several iteration | modes of the error
sweeps:

' '
N = o = N

are

eliminated
effectively, but
smooth modes are
damped
very slowly.

' '
N = o = N

_CASC
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Highlights of Multigrid: Smooth error
can be represented on a coarse grid

e A smooth function:

0
-0 .5 | //
-1

0 0 .5

« Can be represented by linear
interpolation from a coarser
grid:

1

On the coarse grid, the
smooth error appears to
be relatively higher in
frequency: in the example
it is the 4-mode, out of
a possible 16, on the fine
grid, 1/4 the way up the
spectrum. On the coarse

grid, it is the 4-mode out
of a possible 8, hence it
is 1/2 the way up the
spectrum.

Relaxation will be more
effective on this mode if
done on the coarser grid!
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Highlights of Multigrid:
What tools are required?

[
[

(0.5 0.5 [ 010 0.25 1.0 0.25
[ N l
] I 0.25 1.0 0.25 O

0.25 1.0 0.25U

oo

O 0.50
Linear Interp. Injection Full-weighting

. Coarse-grid Operator A?". Two methods:
(1) Discretize equation at larger spacing

(2) Use Galerkin Formula:
AN = 1 AR
_CASCE—
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Highlights of Multigrid:
The coarse-grid correction

uh — uh + e"@
Correct

Im‘er%olate

ehzlz-]em

Solve A e = D
> 2 —1 _2h
e = (AT "y

First brse érid

_Case
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Highlights of Multigrid:

Recursion: the (v,0) V-cycle

'« Major question: How do we "solve" the coarse-grid
residual equation? Answer: recursion

.uh‘—GV(Ah,fh) uh - u" +e" @
2h B ch _ phoh h N 2h
f g AuM) e' —Jdonu

@ v - V(A M uh - u + e @
4h | dhge 2h _ A 2N
udh gV (AM f4h). ‘ udh _ ydh 4+ gdh
8h | 8Mug 4h _ 5 4h
£ (R - AU e _ Ag ush

_CASC et = (AT) 7T
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The goals we strive for in AMG

Use algebraic nature of the problem to define MG
components.

In the most general case, use the matrix only.
O(N) setup & cycle time.

"Typical" MG efficiency (for comparable problems).

‘;_Q\‘SC/ veh 13



What are the Pieces? The basics of an
AMG algorithm

o Standard AMG only uses matrix info

i -'r_;-;';‘; > i Co
?j;,h'!! S

l

I
I

o AMG automatically coarsens “grids” [

1

DYNA3D
In AMG we DEFINE smooth error:

Smooth error is that error which is
slow to converge under relaxation.

AMG Framework

by _pointwise algebraically
relaxation : M99 th error

] Choose coarse grids, transfer
Nyl d operators, etc. to eliminate

Accurate characterization of smooth error is crucial
_CASC
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There are numerous choices to be made

o« Relaxation
— Jacobi, Gauss-Seidel, block, etc

o Coarse-grid selection (p (houm”wuse aggregation,
agglomera’rlon graph theoretic

o Interpolation operator P
— generally depends on concept of "smoothness”

o Restriction oper'a‘ror' R
— most commonly R

o Coarse gr'lii operator Akt
— genérally Galerkin

o Solu’rloncgc h ot
slash etc

_CASC—
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But sometimes, smooth error isn't!
(smooth, that is)

o Consider the problem
—(aux)x = (buy)y +cuxy = T(X,y)

« on the unit square, using a regular Cartesian grid,
with finite difference stencils and values for

_CASC

a,b,and c: Uk =h °[1 -2 1]
a=1 a=1 1 * 1 *
b=1000 b=1 - = | _
c=0 c=2 vy h2 12
a=1 a=1000 , |71 1
b=1 b:g)- ny — —2 1 -2 1
c=0 c= N
_ 1 -1
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Smooth error for
—(aux)x — (buy)y +cuxy =1(X,y)
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The Assumptions (often hidden) common
to most, if not all, AMG methods

o In almost any algebraic method, certain
assumptions are made regarding nature of
"smooth” error.

o These assumptions are then used to guide the
coarse-grid selection, and to define the
prolongation, restriction, and coarse-grid
operators

« The AMG Holy Grail: what is smoothness?

_CASCE—
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The Assumptions: characterizing smooth
error

» Small energy: <Au-2f,u> =0 or {Ae e) =0

» Eigenvectors corresponding to small eigenvalues of
the operator matrix

« Element-based approaches (low energy modes of
local matrices)

« Relaxation-driven: ZAijeT:O

_CASC—
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The Assumptions: philosophies of
prolongation

o The columns of the prolongation operator P span
the space of “"smooth” functions

o The rows of P correspond to fine-grid dofs (i.e.,
what nearby C-points contribute, in what
proportion, to this F-point?)

o The columns of P correspond to coarse-grid dofs
(i.e., what contribution does this C-point make to
which F-points?)

e Methods of determining P may be either row-
based (e.g., Ruge-Stiibben, AMGe) or column based
(e.g., smoothed aggregation, pAMGe). Which
orientation is used depends on the underlying

Q\SC/smooThness assumption!
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Where did we come from?

Classical AMG



The Assumptions: characterizing smooth
error by Ae=0

o M-Matrices: Poisson on unstructured grid.

o For most iterations (e.g., Jacobi or Gauss-Seidel)
slow convergence holds if Ae=0

1
» Hence > @€ =0 implying that & =7-3 . aj §

o An implication is that, if €is an error slow to
converge, then locally at least, € can be well-
approximated by an average of its neighbors.

o Another implication is that smooth error varies
slowly in the direction of dependence.

_CASC
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Prolongation based on smooth error,
variable inter-dependence

Sefts:
C; === Strongly connected C -pfts.

Dis— Strongly connected F -pfts.
D."=mm Weakly connected points.

Ae =0
o 3ii€ =—gqaij% - 2887 ) &S
J U J LD u

Strong € Strong F Weak pfts.
_CASC—
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Prolongation weights defined by
collapsing /-to-F connections

In the smooth-error relation, use € = € for
weak connections. For the strong /J-points use:

NN []

AL

yielding the prolongation weights:

_CASC—

veh 24



Classical AMG algorithm works
remarkably well for many problems

« Very effective on scalar problems & some
systems.

» Research on parallel coarsening algorithms

led to Boom&rAMéG, a parallel AMG code.

Scaled Efficiency of BoomerAMG (Blue Pacific)
1.00
0.80
0.60 — Solve
0.40 - === Per |ter
0.20 I —— :’
OOO T T T T 1
0 200 400 600 800 1000
processors (problem size)

_CASC—
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Where are we now?

AMGe



Good local characterizations of smooth
error is key to robust AMG

o Traditional AMG uses the following heuristic,
based on properties of M-matrices: smooth error
varies slowest in the direction of “large"” coefficients.

1 =4 -1 However:
A = 2 8 2 Stretched quad example (AX - ):
Direction of strength not apparent.
-1-4-1 Worse for systems.

_CASC—
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The Assumptions: characterizing smooth
error by (Ae e) =0

o Start with a global measure that relates interpolation
accuracy and eigenmodes

o Fundamental heuristic for AMGe: for a two grid algorithm, the
interpolation operator must be able to reproduce a mode up to
the same accuracy as the size of the associated eigenvalue.

o That is, the following AMGe measure should be small:

<(I ~Qe (1-Q) e) . where Qs injection
{Ae e) ' followed by interpolation

M(Q.€) =

_CASC—
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AMGe uses elements to localize and
approximate modes with error ~ A

Use local measure to construct
AMGe components:

(& (1-Qe gl (1-Qe)
max ;
ez0 <Aie,e>

Q=P[O I]

_CASCE—
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Use local measure to define interpolation

o Interpolation is defined by the arg min of

in M. (Q
nglliBZi (G

where we restrict the structure of interpolation to
“nearest neighbors” by

Z; = {vOR":v; =0 for jUQ\C;}
o This is easily computed in practice.

_CASC—
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Using local measure to define
intferpolation < fitting local eigenmodes

o Assume the eigen-decomposition:

0O O

AV =ViNG V= Vig Vig ] A= [O /\iJi

o Finding the arg min is equivalent to solving the
following constrained least-squares problem

min H/\ ﬂZVH(e - 0) H subject to ViB(ei—qi) =(

_CASC—
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Computing interpolation in practice

o Partition local matrix by F & C-pts:

A = Ass Are
Act Acc_
o Interpolation to point 7is defined by
—_— _ O _
T A A

o Perfect interpolation of the local problem.
_CASCE—
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Agglomeration coarsening

_Case
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Agglomeration coarsening

1 Agglomerate by
growing groups of
elements using
graph & measures.

1 Define faces by
intersecting
¢ ¢ ¢ ® elements

1 Define vertices by
® o o o intersecting faces

_CASC—
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Agglomeration coarsening

O O O O
1 Let the vertices
be the C-points
O O O O
1 Construct coarse
elements &
stiffness matrices
O O O O
PTE Y AdLP
[ O L
O O O O

_CASCE—
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Agglomerations for triangular elements,
both structured & unstructured

_CASC
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Where are we now?

Element-Free AMGe



The Assumptions: smooth error given by
low energy modes of local matrices

o Let | be the f-point
to which we wish to
interpolate

o Q(1)is the set of
points in the _
neighborhood of |

o is the set of
coarse nearest
neighbors of i

_CASCE—
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The Assumptions: smooth error given by
low energy modes of local matrices

o« Define Qy (1), the
set of "exterior”
points for the
neighborhood of 1I:
the set of points j
such that j is
connected to a fine
point in the
neighborhood of |

Qu () =110Q0) “a #0, JO0Q)\Qc(1)}
_CASC
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Prolongation in Element-free AMGe:
based on extensions

« We use the following window of the matrix A

Are Are Aix 01 Q> \ Qc(i)
[ ] [] [] []

Axi Axc Axx O Qx(1)
[] N (1] [ | everything else on grid

where we will only be interested in the blocks
shown.

_CASC—
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Prolongation in Element-free AMGe:
based on extensions

« Assume that an extension mapping is available:

| 0
E=| 0 |

Ext Exc

i.e., we interpolate the exterior dofs ("X") from
the interior dofs 7 and ¢, by the rule

Vx = Exs Vi + ExcVe

_CASC—
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The Assumptions: smooth error from low
energy modes of local A;; no elements!

« We construct the prolongation operator on the
basis of the modified local matrix

| 0
At Are | = [Ar A Ak ]| O
| Ext Exc|

o Then the #&h row of the prolongation matrix 7 is
taken as the #h row of the matrix:

[ ~=1.~ [
- DAsr Afc O
[ [

_CASC—
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Where are we going?

Compatible Relaxation (CR)



CR & AMGe: Measuring coarse-grid quality

« Assume we are given a coarse grid. Then, the
following measures the ability of the coarse grid
to represent algebraically smooth error:

Mc = mMingmaXq.o M(Q, €)

e We have that

1
A min(Ast)

W = _Af¥ AfC; MC =

‘;_Q\‘SC/ veh 45



Using CR: How good are the C points?

o Relax on A, x,= 0. (Compatible relaxation)

« If CR is slow to converge, either increase the
coarse-grid size or do more relaxation in the
multigrid cycle.

« We have shown that compatible relaxation is fast
to converge if and only if the AMGe measure is
small.

_CASCE—
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Using CR: Defining the Coarse Variables

o To check convergence of CR, relax on the equation
Aff X =0
& monitor pointwise convergence to O.
o CR coarsening algorithm:

Initialize U=Q: C=: F=Q -C

While U# ]
Do v compatible relaxation sweeps

U={i:xV/x¥~1>0}
C=C0{independent set of U} ; F=Q -C

_CASC—
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Using CR: Defining Interpolation

o« The arg min of the AMGe measure yields

i
I
where Ars W = —Ac. .

o« If CR is fast to converge, then one might use
instead a few sweeps of relaxation with Wy = 0.
Yavneh does something similar to this.

o AMGr & Multigraph use W = —Dl_lAfC :

_CASC—
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Spectral AMGe

Where are we going?



o Consider (as before) the measure function
((1-Q)e, (I-Q)e)
M(Q.e) = (Ae, &) |
& define the new measures
Mj = ming MaXeo M(Qp,8); Q= P(P'P) P!
My = Ming maxe,q M(Qx€); Q, = P(P'AP) “1pTa
o It is easy to show that M, = M,;< M.

« Let p;be the ordered orthonormal eigenvectors of A .

» Then the arg min of both measures isP = [pg,...,Pc]
with measure 1

A
_CASC c+l

veh 50



pAMGe: Take patched local eigenvectors
as the interpolation basis!

o As with AMGe, we use elements to localize the
problem of determining & matching smooth error.

» Coarse dofs are no longer subsets of fine dofs:
coefficients of local eigenvectors become the
coarse-grid dofs.

o Local eigenvectors are "patched” together to form
columns of global prolongation operator

o Currently expensive, but potentially very robust.

_CASC
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Adaptive AMGe

Where are we going?



Adaptive AMGe: goals

o We wish to apply AMG to "more difficult”
problems (systems, elasticity, slide surfaces, etc.)

« We wish to develop an AMG solver with increased
robustness while not sacrificing optimality.

« We wish to develop a solver that defaults to
simple algorithms when presented with simple
problems.

_CASC—
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Adaptive or Bootstrap or Calibration or
Prerelaxation or Feedback AMG

o Test your AMG on a problem whose solution you know:
Ax = 0.

o If it works after a few cycles, stop.

o Else, xis a good bad guy: it's an algebraically smooth
error in the sense that AMG cannot quickly reduce it.

e Now adjust the coarse grid and interpolation so that
it matches x well. The trick is to do this locally & to
continue it on coarser levels.

_CASCE—
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AMG algorithms can be classified by their
characterization of “"smooth error”

Small residual Small energy Comp. Relaxation ~ Small eigenvalue
Ae=0 <Age>=0 onA.x,=0 A€ =Ag A=0

- classical AMG * element-free AMGe gg\%r\gemp AMG . moST recent '

+ original BoomerAMG * recent developments . , * implemented in

* mature algorithms * not yet parallel not yet implemented test code

* fast, less memory * slower, more memory * slower, more memory ® memory intensive

* low complexity * higher complexity mciy be high combplleery * higher complexity

- solves many problems  * solves more problems solves m|: re !orc; elg‘s * solves most

* less robust; fails on * more robust; works on mor'ke robust; Z%‘;’ | problems
difficult, complicated more difficult wor'blon more aIfTicult . ost robust AMG
problems problems, but not all ~ Problems, even most method known

- adaptivity can become a
very powerful feature

‘;_Q\‘SC/ veh 55



AMG Rules!

o Interest in AMG methods is high, and rising, because of the
increasing importance of tera-scale simulations on
unstructured grids.

o« Diverse AMG methods are derived from a very few
fundamental assumptions; in particular, assumptions about
the nature of smooth error.

e AMG is evolving along a number of disparate lines, each
based on some fundamental ideas tailored to address specific
difficulties. They run a gamut from “cheap, fast, with
limited applicability” to “very robust but expensive.”

_CASC
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